研究成果:2020
英文論文
Abe, S., Ogawa, T., Maeda, K. & Arai, T. (2020), Sodium variation in Geminid meteoroids from (3200) Phaethon, Planet Space Sci., 194, 105040.
Arakawa, M., Saiki, T., Wada, K., …, Ishibashi, K., …, Yamada, M., et al. (2020), An artificial impact on the asteroid 162173 Ryugu formed a crater in the gravity-dominated regime, Science, 368, 67-71.
Devogèle, M., MacLennean, E., Gustafsson, A., Moskovitz, N., Chatelain, J., …, Arai, T., …, et al. (2020), New Evidence for a Physical Link between Asteroids (155140) 2005 UD and (3200) Phaethon, The Planetary Science Journal, 1, 15.
Hirata, N., Morota, T., Cho, Y., Kanamaru, M., Watanabe, S.-I., Sugita, S.,..,Yamada, M.,.., et al. (2020). The spatial distribution of impact craters on Ryugu. Icarus, 338, 113527.
Horinouchi, T., Hayashi, Y.Y., Watanabe, S., Yamada, M., Yamazaki, et al. (2020), How waves and turbulence maintain the super-rotation of Venus’ atmosphere, Science, 368, 6489, 405-409,
Kadono, T., Arakawa, M., Honda, R., Ishibashi, K., Ogawa, K., …, K. Wada (2020), Impact Experiment on Asteroid (162173) Ryugu: Structure beneath the Impact Point Revealed by In Situ Observations of the Ejecta Curtain, Astrophysical J ,899, L22.
Kadono, T., Suzuki, A. I. , Matsumura, R. , Junta, N. , Suetsugu, R., Kurosawa, K., & Hasegawa, S. (2020), Crater-ray formation through mutual collisions of hypervelocity-impact induced ejecta particles, Icarus, 339, 113590,
Kasaba, Y., Takashima, T., Matsuda, S., Eguchi, S. Endo, M., …, Kobayashi, M., et al. (2020), Mission Data Processor Aboard the BepiColombo Mio Spacecraft: Design and Scientific Operation Concept, Space Science Review, 216, 34.
https://link.springer.com/article/10.1007/s11214-020-00658-x
Kikuchi, S., Watanabe, S., Saiki, T., Yabuta, H., Sugita, S., …, Wada, K., …, Senshu, H., …, Yamada, M., et al. (2020), Hayabusa2 Landing Site Selection: Surface Topography of Ryugu and Touchdown Safety, Space Science Review, 216, 116.
Kimura, H., Hilchenbach, M., Merouane, S., Paquette, J., & Stenzel, O. (2020). The morphological, elastic, and electric properties of dust aggregates in comets: A close look at COSIMA/Rosetta’s data on dust in comet 67P/Churyumov-Gerasimenko. Planetary and Space Science, 181, 104825.
Kimura, H., Kunitomo, M., Suzuki, T. K., Robrade, J., Thebault, P., & Mitsuishi, I. ( 2020). Hot grain dynamics by electric charging and magnetic trapping in debris disks, Planetary and Space Science, 183, 104581.
Kimura, H., Postberg, F., Altobelli, N., & Trieloff, M. (2020). Organic matter in interstellar dust lost at the approach to the heliosphere: Exothermic chemical reactions of free radicals ignited by the Sun. Astronomy & Astrophysics, 643, A50,
Kimura, H., Wada, K., Kobayashi, H., Senshu, H., Hirai, T., Yoshida, F., Kobayashi, M., Hong, P. K., Arai, T., Ishibashi, K., & Yamada, M. (2020). Is water ice an efficient facilitator for dust coagulation?, Monthly Notices of the Royal Astronomical Society, 498, 1801–1813,
Kimura, H., Wada, K., Yoshida, F., Hong, P. K., Senshu, H., Arai, T., Hirai, T., Kobayashi, M., Ishibashi, K., & Yamada, M. (2020). The tensile strength of dust aggregates consisting of small elastic grains: Constraints on the size of condensates in protoplanetary disks, Monthly Notices of the Royal Astronomical Society, 496, 1667–1682.
Kobayashi, M., Miyachi, T., Okudaira, O., Takechi, S., Kurozumi, A., et al. (2020). Acoustic signal production in ethanol by energetic xenon ions. Japanese Journal of Applied Physics, 59, 028004.
https://iopscience.iop.org/article/10.35848/1347-4065/ab6be5
Kobayashi, M., Shibata, H., Nogami, K., Fujii, M., Hasegawa, S., …, Hirai, T., …, Kimura, H., et al. (2020), Mercury Dust Monitor (MDM) Onboard the Mio Orbiter of the BepiColombo Mission, Space Science Review, 216, 144.
https://link.springer.com/article/10.1007%2Fs11214-020-00775-7
Krüger, H., Strub, P., Sommer, M., Altobelli, N., Kimura, H., Lohse, A.-K., Grün, E., & Srama, R. (2020). Helios spacecraft data revisited: detection of cometary meteoroid trails by following in situ dust impacts. Astronomy & Astrophysics, 643, A96,
Lee, Y. J., Munoz, A. G., Imamura, T., Yamada, M., Satoh, T., et al. (2020) Brightness modulations of our nearest terrestrial planet Venus reveal atmospheric super-rotation rather than surface features, Nature Communications, 11, 5720.
Matsumoto, K., Noda, H., Ishihara, Y., Senshu, H., Yamamoto, K., Hirata, N., et al. (2020). Improving Hayabusa2 trajectory by combining LIDAR data and a shape model. Icarus, 338, 113574.
Mando, Y., Tanaka, K., Hirai, T., Kawakita, S., Higashide, M., et al. (2020), Investigation on Sustained Discharge of Satellite’s Power Harness Due to Plasma from Space Debris Impact, Proceedings of the 2019 15th Hypervelocity Impact Symposium. 2019 15th Hypervelocity Impact Symposium. Destin, FL, USA. April 14–19, 2019. V001T10A002. ASME.
Milillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., …, Kobayashi, M., et al. (2020), Investigating Mercury’s Environment with the Two-Spacecraft BepiColombo Mission, Space Science Review, 216, 93.
https://link.springer.com/article/10.1007%2Fs11214-020-00712-8
Morota, T., Sugita, S., Cho, Y., Kanamaru, M., Tatsumi, E., …, Yamada, M., …, Senshu, H., …, Komatsu, G., …, Wada, K., …, et al. (2020), Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution, Science, 368, 654–659.
Murakami, G., Hayakawa, H., Ogawa, H., Matsuda, S., Seki, T., …, Kobayashi, M., et al. (2020), Mio—First Comprehensive Exploration of Mercury’s Space Environment: Mission Overview, Space Science Review, 216, 113.
https://link.springer.com/article/10.1007%2Fs11214-020-00733-3
Nara, Y., Imamura, T., Masunaga, K., Lee, Y. J., Terada, N., Yoshioka, K., Yamazaki, A., Seki, K., Yoshikawa, I., Yamada, M., Watanabe, S. (2020), Vertical coupling between the cloud‐level atmosphere and the thermosphere of Venus inferred from the simultaneous observations by Hisaki and Akatsuki. Journal of Geophysical Research: Planets, 125, e2019JE006192.
Ohtsuki, K., Kawamura, H., Hirata, N., Daisaka, H., & Kimura, H. (2020). Size of the smallest particles in Saturn’s rings. Icarus, 344, 113346,
Okada, T., …, Senshu, H., …, Sugita, S., …, Wada, K., …, Yamada, M., et al., (2020), Highly porous nature of a primitive asteroid revealed by thermal imaging, Nature, 579, 518–522.
Okamoto, T., Kurosawa, K., Genda, H. & Matsui, T. (2020), Impact Ejecta Near the Impact Point Observed Using Ultra-high-Speed Imaging and SPH Simulations and a Comparison of the Two Methods, Journal of Geophysical Research: Planets, 125, e2019JE005943.
Ogawa, N., Terui, F., Mimasu, Y., Yosikawa, K., Ono, G., …, Yamada, M., et al.(2020), Image-based autonomous navigation of Hayabusa2 using artificial landmarks: The design and brief in-flight results of the first landing on asteroid Ryugu, Astrodynamics, 4, 89–103.
https://link.springer.com/article/10.1007%2Fs42064-020-0070-0
Ohtsuki, K., Kawamura, H., Hirata, N., Daisaka, H. & Kimura, H. (2020), Size of the smallest particles in Saturn’s rings, Icarus 344, 113346.
Okada, T., Fukuhara, T., Tanaka, S., Taguchi, M., Arai, T., Senshu, H., …, Wada, K., …, Yamada, M., et al. (2020), Highly porous nature of a primitive asteroid revealed by thermal imaging, Nature, 579, 518–522.
Oki, Y., Yoshikawa, K., Takeuchi, H., Kikuchi, S., Ikeda, H., …, Yamada, M., et al. (2020), Orbit insertion strategy of Hayabusa2’s rover with large release uncertainty around the asteroid Ryugu, Astrodynamics, 4, 309–329.
A Correction to this article was published on 10 February 2021
Otto, K. A., Matz, K.-D., Schröder, S. E., Parekh, R., Krohn, K., …, Yamada, M., et al. (2020), Surface roughness of asteroid (162173) Ryugu and comet 67P/Churyumov–Gerasimenko inferred from in situ observations, Monthly Notices of the Royal Astronomical Society, 500, 3178–3193.
Saiki, T., Mimasu, Y., Takei, Y., Yamada, M., Sawada, H., …, Wada, K., et al. (2020), Motion reconstruction of the small carry-on impactor aboard Hayabusa2, Astrodynamics, 4, 289–308.
https://link.springer.com/article/10.1007%2Fs42064-020-0077-6
Saito, Y. , Hong, P.K. , Niihara, T. , Miyamoto, H. , Fukumizu, K. (2020). Data-driven Taxonomy Matching of Asteroid and Meteorite, Meteoritics & Planetary Science, 55, 193-206,
Sato, T.M., Satoh, T., Sagawa, H., Manago, N., Lee, Y.J., Murakami, S., Ogohara, K., Hashimoto, G.L., Kasaba, Y., Yamazaki, A., Yamada, M., Watanabe, S., Imamura, T., Nakamura, M. (2020), Dayside cloud top structure of Venus retrieved from Akatsuki IR2 observations, Icarus, 345, 113682,
Shimaki, Y., Senshu, H., Sakatani, N., Okada, T., Fukuhara, T., …, Yamada, M., et al. (2020), Thermophysical properties of the surface of asteroid 162173 Ryugu: Infrared observations and thermal inertia mapping, Icarus, 348, 113835.
Shoyama, T., Wada, Y. & Matsushita, O. (2020), Emergence of tangential stiffness through the use of inclined orthotropic material. Proc Institution Mech Eng Part C J Mech Eng Sci 095440622096796,
Soldini, S., Saiki, T., Ikeda, H., Wada, K., Tsuda, Y., Hirata, N., Hirata, N. (2020), A generalised methodology for analytic construction of 1:1 resonances around irregular bodies: Application to the asteroid Ryugu ’s ejecta dynamics, Planet. Space Sci., 180, 104740.
Takayanagi, T., Uesaka, T., Nakamura, Y., Unlu, M. B., Kuriyama, Y., …, Kobayashi, M., et al. (2020), On-line range verification for proton beam therapy using spherical ionoacoustic waves with resonant frequency, Scientific Reports, 10, 20385.
Takeuchi, H., Yoshikawa, K., Takei, Y., Oki, Y., Kikuchi, S., …, Yamada, M., et al. (2020), The deep-space multi-object orbit determination system and its application to Hayabusa2’s asteroid proximity operations, Astrodynamics, 4, 377–392.
Takir, D., Kareta, T., Emery, J. P., Hanus, J., Reddy, V., …, Arai, T. (2020), Near-infrared observations of active asteroid (3200) Phaethon reveal no evidence for hydration, Nature Communications, 11, 2050.
Tatsumi, E., Domingue, D., Schröder, S., Yokota, Y., Kuroda, D., …, Yamada, M., …, Sugita, S. (2020), Global photometric properties of (162173) Ryugu. Astronomy & Astrophysics, 639, A83.
Veras, D. & Kurosawa, K. (2020). Generating metal-polluting debris in white dwarf planetary systems from small-impact crater ejecta, Monthly Notices of the Royal Astronomical Society, staa621,
Yamamoto, K., Otsubo, T., Matsumoto, K., Noda, H., Namiki, N., …, Senshu, H., et al. (2020), Dynamic precise orbit determination of Hayabusa2 using laser altimeter (LIDAR) and image tracking data sets, Earth Planets Space, 72, 85.
邦文論文
三宅範宗,大野宗祐,石橋高,河口優子,奥平修,前田恵介,飯島一征,梯友哉,山田学,加藤健一,山田和彦,高橋裕介,山岸明彦,瀬川高弘,野中聡,福家英之,吉田哲也,松井孝典 (2020), 成層圏微生物採取実験(Biopauseプロジェクト)に関する2017-2019年大気球実験報告,JAXA Research and Development Report, JAXA-RR-20-009, 1-17.