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1 Introduction

Here I give a brief explanation of interaction model for dust particles in contact, used in our simulation.
The concepts of our modeling are summarized as follows:

• Particles are hard spheres but can overlap each other when they are in contact. This overlapping
creates various interactions between contact particles, i.e., repulsive and attractive forces in the normal
direction, and resistance to sliding, rolling and twisting.

• Each particle consists of an elastic body with surface energy. Elastic behavior produces repulsive
forces and surface energy is the source of attractive forces.

• In elastic regime, which means monomer’s deformation is reversible and no energy dissipation occurs,
i.e., spring-like behavior, we assume potentials for each degree of freedom of particle motion (Fig.
1). Forces and torques acting between contact particles are given by the derivative of those potentials.

• Initial contact points on particle surfaces are recorded and their motions are traced. Displacements
necessary to calculate potentials of sliding and rolling motions are given by the change of those
contact points.

• When the displacements become larger than critical values assumed, we consider inelastic deforma-
tions occur: excesses of the displacements are cut-off and energies corresponding to the displacement
excesses are dissipated. Energies stored in the form of potentials are also dissipated when contact
particles separate.

• These ideas are based on the previous works, such as Hertz (1881) (Hertzian contact elastic theory),
Johnson, Kendall and Roberts (1971) (JKR theory for contact elastic bodies with surface energy),
Johnson (1987) (contact elastic theory), Chokshi et al. (1993), and Dominik and Tielens (1995,
1996).

In the following, details of grain interaction model are described, considering two spheres (particle 1
and 2) in contact with each other, having radiusr1 andr2, Young modulusE1 andE2, Poisson’s ratioν1 and
ν2, (shear modulusG1 andG2), respectively. Surface energy between two spheres isγ. The position vectors
of the two spheres’ centers arex1 andx2, respectively.

(a) (b) (c) (d)

Figure 1:Degrees of freedom for two contact particles: (a) normal, (b) sliding, (c) rolling, (d) twisting.
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2 Normal contact of elastic spheres with surface energy : JKR theory

Here, I summarize main consequences derived from JKR theory (Johnson, Kendall and Roberts, 1971; see
also Johnson, 1987) for normal contact of elastic spheres having surface energy. It should be noted that
variables described here are used in the following sections.

Two spheres in contact make a contact surface that is approximated by a flat disk with radiusa. When
no external forces are acting, the repulsive force due to elasticity and the attractive force due to surface
energy are balanced, thena becomes equilibrium radiusa0 ;

a0 =

(
9πγR2

E∗

) 1
3

, (2.1)

where
1
R

=
1
r1

+
1
r2
,

1
E∗

=
1− ν2

1

E1
+

1− ν2
2

E2
. (2.2)

The compression length between two contact spheres,δ, is defined as

δ = r1 + r2 − |x1 − x2| . (2.3)

As particles considered in our simulation are hard, i.e, non-deformable, two contact spheres overlap when
δ > 0. In that sense,δ can be considered to be overlapping length. It should be noted that negative value ofδ
is possible.δ < 0 means that a neck-like structure is formed between the contact particles. The equilibrium
compression,δ0, at whicha = a0, is given by

δ0 =
a2

0

3R
. (2.4)

The force necessary to separate two spheres in contact quasi-statically is given by

Fc = 3πγR. (2.5)

At the moment of separation,δ becomes−δc, where

δc =
3
2

(
1
6

) 1
3

δ0 ' 0.825δ0. (2.6)

The relations between the force acting between two contact particles,F, the contact disk radiusa, and
the compression lengthδ are given by

F
Fc

= 4


(

a
a0

)3

−
(

a
a0

) 3
2

 (2.7)

δ

δc
= 6

1
3

2
(

a
a0

)2

− 4
3

(
a
a0

) 1
2

 (2.8)
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3 Potentials, forces and torques in elastic regime

3.1 Potentials

A total potentialU for contact two particles is given by the sum of potential for each degree of freedom :

U = Un (δ) + Uslide(ζ) + Uroll (ξ) + Utwist (φ) , (3.1)

where

• Un (δ) : Normal direction potential as a function of overlapping length (or compression)δ. Details
on the form ofUn (δ) are described in the next section.

• Uslide(ζ) : Potential stored by tangentially sliding motion as a function of sliding displacementζ.
The definition ofζ is described later.Uslide(ζ) is given by

Uslide(ζ) =
1
2

ks |ζ |2 , (3.2)

whereks is a constant (like a spring constant) given by the elastic contact theory (Johnson, 1987) as
follows1;

ks = 8a0G
∗, where

1
G∗

=
2− ν1

G1
+

2− ν2

G2
. (3.3)

• Uroll (ξ) : Potential stored by rolling motion as a function of rolling displacementξ. The definition
of ξ is described later.Uroll (ξ) is given by

Uroll (ξ) =
1
2

kr |ξ|2 , (3.4)

wherekr is a constant given by Dominik and Tielens (1995) as follows2;

kr =
4Fc

r1
. (3.5)

• Utwist (φ) : Potential stored by twisting motion as a function of twisting angular displacementφ.
The definition ofφ is described later.Utwist (φ) is given by

Utwist (φ) =
1
2

ktφ
2, (3.6)

wherekt is a constant given gym the contact elastic theory (Johnson, 1987) as follows1;

kt =
16
3

Ga3
0, where

1
G

=
1

G1
+

1
G2
. (3.7)

It should be noted that these potentials, in reality, would not be independent of each other. In the above
equations, however, we assume them as independent functions just for simplicity.

1According to the elastic contact theory (Johnson, 1987),a is used instead ofa0 in the formula ofks andkt. We use, however,
a0 so thatUslide andUtwist should be independent of the normal direction displacement,δ(a).

2According to the theory proposed by Dominik and Tielens (1995), the resistance torque for rolling motion is given by

Mr = −4Fc

(
a
a0

) 3
2 ξ. Here, by the same reason as described in givingks, we assume thata = a0, so that we obtainMr = −4Fcξ

and thenks = 4Fc

r1
.
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3.2 Contact point vector

An initial contact point on particle surfaces are recorded. We define unit contact point vectorsn1 andn2 as
vectors originated from the center of each particle and oriented to the initial contact point. The directions
of n1 andn2 are changed only by the rotation of each particle.

3.3 General formulae of forces and torques

Force acting on particle 1 is given by

F1 = − ∂U
∂x1

. (3.8)

Torque acting on particle 1 is given by

M1 = −∂U
∂θ1

, (3.9)

whereθ1 is the rotational angle vector of particle 1 around its center.
Considering the infinitesimal rotation ofn1,

δn1 = δθ1 × n1, (3.10)

the infinitesimal change of potentialδU due toδn1 is given by

δU =
∂U
∂n1
· δn1 =

∂U
∂n1
· (δθ1 × n1) = δθ1 ·

(
n1 × ∂U

∂n1

)

=

(
n1 × ∂U

∂n1

)
· δθ1. (3.11)

Comparing this equation with the formula of infinitesimal change of potentialδU due toδθ1

δU =
∂U
∂θ1
· δθ1, (3.12)

we obtain
∂U
∂θ1

= n1 × ∂U
∂n1

. (3.13)

Therefore, the torque formula (3.9) can be expressed by

M1 = −n1 × ∂U
∂n1

. (3.14)
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3.4 Normal direction

The force acting on the particle 1 by the normal direction interaction between particle 1 and 2 is given by

Fn,1 = −∂Un

∂x1
= −∂Un

∂δ

∂δ

∂x1
. (3.15)

According to the JKR theory, normal direction potentialUn (δ) is given through the contact disk radius
a as follows;

Un(δ(a))
Fcδc

= 4× 6
1
3


4
5

(
a
a0

)5

− 4
3

(
a
a0

) 7
2

+
1
3

(
a
a0

)2
 (3.16)

with
δ(a)
δc

= 6
1
3

2

(
a
a0

)2

− 4
3

(
a
a0

) 1
2
 . (3.17)

Thus,
∂Un

∂δ
can be numerically calculated fromUn(δ) shown in Fig. 2. In addition, we ignore the potential

in the regionδ < 0 before particles contact, that is, particles contact initially atδ = 0.

-4

-3

-2

-1

 0

 1

 2

 3

 4

-1  0  1  2  3  4

U/Fcδc

δ/δc

1.21

δ0/δc 2.79

4

5

1

63
-1.45

4

45

Figure 2:PotentialUn as a function ofδ.

∂δ

∂x1
can be derived from Eq. (2.3),δ = r1 + r2 − |x1 − x2|, and we obtain

∂δ

∂x1
= − x1 − x2

|x1 − x2| (3.18)

As a result, we obtain

Fn,1 =
∂Un

∂δ

x1 − x2

|x1 − x2| . (3.19)

For example, when compression occurs over equilibrium (i.e.,δ > δ0),
∂Un

∂δ
becomes positive as shown in

Fig. 2 and thus the direction of normal forceFn,1 becomes the same asx1 − x2, that is, repulsive.

It is obvious that any torques cannot be generated fromUn, becauseUn is not a function ofn1.
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3.5 Resistance to sliding motion

For the definition of slide displacementζ, we consider a vectorζ0 as follows;

ζ0 = r1n1 − r2n2 + (r1 + r2)nc, (3.20)

where
nc =

x1 − x2

|x1 − x2| (≡ rc

rc
). (3.21)

ζ0 is nearly equal to the vector originated from the initial contact point of particle 2 to that of particle 1. We
defineζ as the component ofζ0 perpendicular to the vectornc (see Fig. 3),

ζ = ζ0 − (ζ0 · nc) nc. (3.22)

By using the above formula ofζ, we can obtain the forceFs,1 and the torqueMs,1 acting on the particle
1 due to sliding motion between particle 1 and 2 as follows:

Fs,1 = −∂Uslide(ζ)
∂x1

= − ∂

∂x1

(
1
2

ksζ
2

)
= −ksζ · ∂ζ

∂x1

= −ksζ
r1 + r2 − ζ0 · nc

|x1 − x2| , (3.23)

Ms,1 = −n1 × ∂Uslide(ζ)
∂n1

= −n1 × ∂

∂n1

(
1
2

ksζ
2

)
= −ksn1 ×

(
ζ · ∂ζ

∂n1

)

= −r1ksn1 × ζ. (3.24)

r1n1

r2n2

x1

x2

r1n1

r2n2

x1

x2

1

2

(a) (b)
(c)

Figure 3:Schematic views of (a) sliding, (b) rolling, and (c)twisting for the definition of each displacement.

7



3.6 Resistance to rolling motion

As shown in see Fig. 3, we define the rolling displacementξ by

ξ = r1n1 + r2n2. (3.25)

SinceUroll (ξ) is obviously independent ofx1, i.e.,
∂Uroll

∂x1
= 0, therefore, no forces are generated by the

rolling motion.
On the other hand, by using the above formula ofξ, we can obtain the resistant torque due to rolling

motion (so-called ‘rolling resistance’) acting on the particle 1 as follows;

Mr,1 = −n1 × ∂Uroll (ξ)
∂n1

= −n1 × ∂

∂n1

(
1
2

krξ
2

)
= −kr n1 ×

(
ξ · ∂ξ

∂n1

)

= −r1kr n1 × ξ. (3.26)

3.7 Resistance to twisting motion

The twisting angular displacementφ is defined as

φ = nc

∫ t

0
(ω1 − ω2) · ncdt, (3.27)

whereω1 andω2 are angular velocities of the particle 1 and 2, respectively (see Fig. 3).t is the time counted
from the beginning of contact.

Then, the resistant torque due to twisting motion acting on the particle 1 is given by

M t,1 = −∂Utwist (φ)
∂φ

= − ∂

∂φ

(
1
2

ktφ
2

)

= −ktφ (3.28)

3.8 Description of particle rotation

We introduce Eulerian parameters (or quaternion) to describe the particle rotation;

e0, e = ( e1, e2, e3 ) , with e2
0 + e2

1 + e2
2 + e3

3 = 1. (3.29)

Rotation of a vectorparound an arbitrary axis can be expressed by using the Eulerian parameters as follows:
Consideringψ as the rotation angle vector (i.e., vectors are rotated byψ in anticlockwise direction around
the axis alongψ) , Eulerian parameters are given by

e0 = cos
ψ

2
(3.30)

e = ψ̂ sin
ψ

2
, (3.31)

whereψ̂ is the unit vector ofψ. By using these Eulerian parameters, the rotation matrixAi j can be expressed
as

Ai j =
(
1− 2e2

)
δi j + 2eiej − 2e0εi jkek. (3.32)
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Then the rotated vectorp′ is given by

p′ = Ap

=
(
1− 2e2

)
p+ 2(p · e) e− 2e0 (p× e) . (3.33)

Note thatA−1
i j = Aji sinceA is an unitary matrix. Thus, the inverse transformation is given by

p = A−1p′

=
(
1− 2e2

)
p′ + 2

(
p′ · e) e+ 2e0

(
p′ × e

)
. (3.34)

Each particle has its own Eulerian parameters and we can trace their temporal evolution, using the
angular velocity of each particle in every time step as follows:

At the beginning, Eulerian parameters of an particle are assumed to be

e0
0 = 1, e0 = 0. (3.35)

We consider the Eulerian parameters and the angular velocity of the particle at timetn as en
0,e

n andω,
respectively. Then, using the following variables

∆θ = ω∆t (3.36)

∆e0 = cos
∆θ

2
(3.37)

∆e = ω̂ sin
∆θ

2
, (3.38)

the Eulerian parameters at timetn+1 = tn + ∆t are given by

en+1
0 = en

0∆e0 − en · ∆e (3.39)

en+1 = en
0∆e+ en∆e0 − en × ∆e . (3.40)

Note: Taking the limitation∆t → 0, we can obtain

ė0 = −1
2

e · ω (3.41)

ė =
1
2

(e0ω − e× ω) . (3.42)

3.9 Tracing n1 and n2

By using Eulerian parameters of particle 1 at timet, e0(t) ande(t), n1(t) (andn2(t)) at timet can be obtained
as follows.

Considering that particle 1 and 2 contact at timet = t0, n1 andn2 at this time are given by

n1(t0) = −n2(t0) =
x2(t0) − x1(t0)
|x2(t0) − x1(t0)| . (3.43)

Next, by using rotation matrix at timet0, A(t = t0), which is a function ofe0(t0) ande(t0) as shown in Eq.
(3.32),n1(0) is calculated,

n1(0) = A−1(t0)n1(t0). (3.44)

Then, by using rotation matrix at timet, A(t), which is a function ofe0(t) ande(t), n1(t) is calculated,

n1(t) = A(t)n1(0). (3.45)
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4 Treatment of energy dissipation and displacement correction in in-
elastic regime

In this section I describe the calculation processes of energy dissipation and displacement correction for
each degree of freedom in inelastic regime.

4.1 Normal direction

There are two processes of energy dissipation for normal direction: one is at the moment of contact of
particles and the other is at the moment of separation.

4.1.1 At the moment of contact

As described in the previous section 3.4, particle contact begins atδ = 0, at which the potential in the
normal direction is negative,

Un (δ = 0) = − 8
15

4
1
3 Fcδc ' −0.847Fcδc. (4.1)

We assume that this energy difference from 0 is dissipated at the beginning of contact. By that assumption,
particle velocities are continuous at the moment of contact. There can be another assumption that the
particles are accelerated abruptly at the moment of contact, transforming the energy difference into kinetic
energy of the particles. We take the former assumption because we think velocity continuity is preferable.
In addition, considering physically, some amount of energy should be lost by sound wave excited by the
particle contact. According to the analysis by Chokshi et al. (1993), this energy loss by sound wave reaches
0.4Fcδc. Therefore, the energy loss at the moment of contact assumed in our calculation is reasonable.

4.1.2 At the moment of separation

As described in the previous section 2, particles are kept in contact even ifδ < 0 and cannot be separated
till δ = −δc. Taking a look carefully at Fig. 2,Un is positive at the moment of separation,

Un (δ = −δc) =
4
45

Fcδc ' 0.09Fcδc. (4.2)

It is considered that this energy is stored in the form of elastic energy and is released by the separation. We
assume, therefore, that this amount of energy is dissipated at the particle separation.

Note that these are energy dissipated not per a particle, but pera pair of contact particles.
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4.2 Sliding and rolling

When the displacements for sliding and rolling become greater than critical values, inelastic deformation is
considered to occur. To treat this inelastic behavior, the following processes are carried out:

1. At the beginning of calculation, we set up the critical values of displacements.

2. When the displacements exceed the critical values, the displacements are reduced to the critical val-
ues.

3. Potentials, forces and torques are calculated with the reduced displacements. Amount of energy
dissipated can be also calculated.

4. We need to correct a contact point vectorn1(t) because the sliding and rolling displacements in the
next following steps are calculated by usingn1(t). In other words, the correction of displacements are
recorded in the contact point vector. Actually,n1(t) is calculated throughn1(0) (see Eq. (3.45)), thus
we need to correctn1(0).

In the following sections, details of above processes for each degree of freedom are described.

4.2.1 Sliding motion

• Critical displacement for sliding

According to Dominik and Tielens (1996), when the particles are sliding each other over the elastic
limit, the frictional force is given by

F f ric =
Ga2

0

2π
, (4.3)

where we assumea = a0 and ignore the difference among materials for simplicity3. Considering that
the inelastic sliding occurs when the elastic force given by Eq. (3.23) reaches toF f ric, we obtain the
critical displacementζcrit :

8a0G
∗ζcrit =

Ga2
0

2π
⇐⇒ ζcrit =

2− ν
16π

a0. (4.4)

(In the above equation, we have simplified the elastic force.)

Therefore, the critical value of displacement for sliding motion,ζcrit is given by the material proper-
ties.

• Displacement correction and energy dissipation

When|ζ | > ζcrit , ζ is corrected toζ′ :

ζ′ = ζcrit
ζ

|ζ | . (4.5)

3Dominik and Tielens (1996) derived a general formula ofF f ric :

Ffric =
Ga2

2π
+


0 (for silicate, graphite,etc...)
1
3

Fn − πa2

3
pcrit (for ice, metal)

where, pcrit =
2.67
π

b3

σ3
G − 24.72

π

b4

σ5
γ,

whereb is the interatomic distance in the material and 2
1
6σ is the equilibrium distance in the pair-potential model. For details,

see Dominik and Tielens (1996).
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The amount of energy dissipated,∆Edis,s, is calculated as

∆Edis,s = ksζ
′ · (ζ − ζ′) = ksζcrit (|ζ | − ζcrit) . (4.6)

Note that∆Edis,s is counted for a pair of contact particles.

• Correction of contact point vector

The displacement excess is given by
∆ζ = ζ − ζ′. (4.7)

It seems that a contact point vector of particle 1,n1(t), is corrected such as4

n′1(t) = n1(t) − 1
2
∆ζ

r1
. (4.8)

n1 must be, however, a unit vector and thus be normalized. Therefore, we need to consider the
normalization and add some correction to the above equation. Here, letl be the size of the apparent
correction,

l =

∣∣∣∣∣
1
2
∆ζ

r1

∣∣∣∣∣ , (4.9)

andl′ be the true size of the correction. By usingl andl′, the corrected point vector (before normal-
ized) is given by

n′1(t) = n1(t) − 1
2
∆ζ

r1

l′

l
. (4.10)

l′ is calculated as follows:

n1

l

l’

1

n’1

Figure 4:

As delineated in Fig. 4, we consider two equations for givingl′


cosβ − cos(β + α) = l

cosβ −
√

l′2 − 2l′ cosβ + 1 cos(β + α) = l′,
(4.11)

where

cosβ =
n1(t) · ∆ζ
|∆ζ | , (4.12)

4Divided by r1 becausen1 is a unit vector. The factor12 reflects that the displacement excess is equally divided into two
contact particles.

12



andα is an angle betweenn1 andn′1 as shown in Fig. 4. Solving these equations (unknown
quantities arel′ andα), we obtain

l′ = cosβ − (cosβ − l) sinβ√
1− (cosβ − l)2

(4.13)

n′1(0) is calculated by operating the rotation matrixA−1(t)

n′1(0) = A−1(t)

(
n1(t) − 1

2
∆ζ

r1

l′

l

)
= n1(0)− 1

2r1

l′

l
A−1∆ζ (4.14)

Normalizingn′1(0), we obtain a new correctedn1(0) such as

nc
1(0) =

n′1(0)∣∣∣n′1(0)
∣∣∣ (4.15)

4.2.2 Rolling motion

• Critical displacement for rolling

According to the idea by Dominik and Tielens (1995), the critical value of rolling displacement,ξcrit ,
should be 2 Å for particles with any size and material. In contrast, an experiment by Heim et al.
(1999) suggests thatξcrit ∼ 32 Å for 1.8µm SiO2 particles.

The appropriate value ofξcrit is not clear so far. Therefore,ξcrit is treated as a parameter in our
calculation.

• Displacement correction, energy dissipation and correction of contact point vector

(Same as in the case of sliding motion.)

When|ξ| > ξcrit , ξ is corrected toξ′ :

ξ′ = ξcrit
ξ

|ξ| . (4.16)

The amount of energy dissipated,∆Edis,r , is calculated as

∆Edis,r = krξ
′ · (ξ − ξ′) = krξcrit (|ξ| − ξcrit) . (4.17)

Note that∆Edis,r is counted for a pair of contact particles.

The corrected point vector (before normalized) att = 0 is given by

n′1(0) = A−1(t)

(
n1(t) − 1

2
∆ξ

r1

l′

l

)
= n1(0)− 1

2r1

l′

l
A−1∆ξ (4.18)

and the new correctedn1(0) is given by

nc
1(0) =

n′1(0)∣∣∣n′1(0)
∣∣∣ (4.19)
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4.3 Twisting motion

• Critical angle for twisting

According to Dominik and Tielens (1996), when the particles are twisting each other over the elastic
limit, the resistant torque for twisting is given by

Mt, f ric =
Ga3

0

3π
, (4.20)

where we assumea = a0 and ignore the difference among materials for simplicity5. Considering that
the inelastic twisting occurs when the torque due to elastic twisting given by Eq. (3.28) reaches to
Mt, f ric, we obtain the critical angle for twisting,φcrit :

16
3

Ga3
0φcrit =

Ga3
0

3π
⇐⇒ φcrit =

1
16π
' 0.02' 1.1◦. (4.21)

• Displacement correction and energy dissipation

When|φ| > φcrit , φ is corrected toφ′ :

φ′ = φcrit
φ

|φ| . (4.22)

The amount of energy dissipated,∆Edis,t, is calculated as

∆Edis,t = ktφ
′ · (φ − φ′) = ktφcrit (|φ| − φcrit) . (4.23)

Note that∆Edis,t is counted for a pair of contact particles.
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5Dominik and Tielens (1996) derived a general formula ofMt, f ric :

Mt, f ric =
Ga3

3π
+



0 (for silicate, graphite,etc...)
1
3

Fca0

(
3
4

â4 − â
5
2

)
− 2

9
πa3pcrit (for ice, metal)

where, pcrit =
2.67
π

b3

σ3
G − 24.72

π

b4

σ5
γ,

whereâ = a/a0, b is the interatomic distance in the material and 2
1
6σ is the equilibrium distance in the pair-potential model. For

details, see Dominik and Tielens (1996).
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