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Introduction

Here | give a brief explanation of interaction model for dust particles in contact, used in our simulation.
The concepts of our modeling are summarized as follows:

Particles are hard spheres but can overlap each other when they are in contact. This overlappin
creates various interactions between contact particles, i.e., repulsive and attractive forces in the norm
direction, and resistance to sliding, rolling and twisting.

Each patrticle consists of an elastic body with surface energy. Elastic behavior produces repulsive
forces and surface energy is the source of attractive forces.

In elastic regime, which means monomer’s deformation is reversible and no energy dissipation occurs
i.e., spring-like behavior, we assume potentials for each degree of freedom of particle motion (Fig.
1). Forces and torques acting between contact particles are given by the derivative of those potential

Initial contact points on particle surfaces are recorded and their motions are traced. Displacement
necessary to calculate potentials of sliding and rolling motions are given by the change of those
contact points.

When the displacements become larger than critical values assumed, we consider inelastic deform:
tions occur: excesses of the displacements areft@nrd energies corresponding to the displacement
excesses are dissipated. Energies stored in the form of potentials are also dissipated when conte
particles separate.

These ideas are based on the previous works, such as Hertz (1881) (Hertzian contact elastic theory
Johnson, Kendall and Roberts (1971) (JKR theory for contact elastic bodies with surface energy).
Johnson (1987) (contact elastic theory), Chokshi et al. (1993), and Dominik and Tielens (1995,
1996).

In the following, details of grain interaction model are described, considering two spheres (particle 1
and 2) in contact with each other, having radiuandr,, Young modulus; andE,, Poisson’s ratio; and
v2, (shear modulu&, andG,), respectively. Surface energy between two sphergsife position vectors
of the two spheres’ centers axg andx,, respectively.

@ (b) Opm pmp @
»

Figure 1:Degrees of freedom for two contact particles: (a) normal, (b) sliding, (c) rolling, (d) twisting.



2 Normal contact of elastic spheres with surface energy : JKR theory

Here, | summarize main consequences derived from JKR theory (Johnson, Kendall and Roberts, 1971; s
also Johnson, 1987) for normal contact of elastic spheres having surface energy. It should be noted th
variables described here are used in the following sections.

Two spheres in contact make a contact surface that is approximated by a flat disk witharadihen
no external forces are acting, the repulsive force due to elasticity and the attractive force due to surfac
energy are balanced, tharbecomes equilibrium radius ;

1
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The compression length between two contact sphéresdefined as
O0=TrI1+I—|X1— Xo|. (23)

As particles considered in our simulation are hard, i.e, non-deformable, two contact spheres overlap whe
6 > 0. Inthat sense) can be considered to be overlapping length. It should be noted that negative w&lue of
is possibles < 0 means that a neck-like structure is formed between the contact particles. The equilibrium
compressiongp, at whicha = ay, is given by

2
8o = % (2.4)
The force necessary to separate two spheres in contact quasi-statically is given by
F. = 31yR. (2.5)
At the moment of separatiod,becomes-é6., where
1
8¢ = g(%)s 8o ~ 0.8255,. (2.6)

The relations between the force acting between two contact particléise contact disk radius, and
the compression lengthare given by
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3 Potentials, forces and torques in elastic regime

3.1 Potentials
A total potentialU for contact two particles is given by the sum of potential for each degree of freedom :
U= Un (5) + Uslide(g) + UroII (f) + Utwist (¢) 5 (31)

where

o Un (5) : Normal direction potential as a function of overlapping length (or compress&iddgtails
on the form ofU,, (6) are described in the next section.

- U slide ({) : Potential stored by tangentially sliding motion as a function of sliding displacegnent
The definition of¢ is described latet) gige (¢) is given by

Usiide (¢) = %kslflz, (3.2)

whereks is a constant (like a spring constant) given by the elastic contact theory (Johnson, 1987) as
follows!;

1 2— 2—
ks = 8a9G", where — = £ + Y2

s t o (3.3)

) Ur0|| (f) : Potential stored by rolling motion as a function of rolling displacengefithe definition
of £ is described latetJ,q (&) is given by

1
Ural (f) = ékr |§|2, (3-4)
wherek; is a constant given by Dominik and Tielens (1995) as folfows
4F
k = —-. (3.5)
r

) Utwist (¢) . Potential stored by twisting motion as a function of twisting angular displacegent
The definition ofg is described latetJis; (@) is given by

Ui (#) = 5K, 36)

wherek, is a constant given gym the contact elastic theory (Johnson, 1987) as follows

16 1 1 1
=—G 3 h _— = — —_— 3.7
ki 3 &, Where -G + G (3.7)

It should be noted that these potentials, in reality, would not be independent of each other. In the abov
equations, however, we assume them as independent functions just for simplicity.

1According to the elastic contact theory (Johnson, 198%® used instead afy in the formula ofks andk;. We use, however,
ap So thatU gige andUyyist Should be independent of the normal direction displacenaésit,
2According to the theory proposed by Dominik and Tielens (1995), the resistance torque for rolling motion is given by

3
M, = —4Fc(%)2 &. Here, by the same reason as described in gikingve assume that = ag, so that we obtaiM, = —4F¢

and therks = 4r—'j°.



3.2 Contact point vector

An initial contact point on particle surfaces are recorded. We define unit contact point vectorgn, as
vectors originated from the center of each particle and oriented to the initial contact point. The directions
of n; andn, are changed only by the rotation of each particle.

3.3 General formulae of forces and torques

Force acting on particle 1 is given by

oU
F,=—— 3.8
1= 50 (38)
Torque acting on particle 1 is given by
oU
My = ——, 3.9
=% (3.9)
where#, is the rotational angle vector of particle 1 around its center.
Considering the infinitesimal rotation of,
ong = 6601 X ny, (310)
the infinitesimal change of potentiéll due toon; is given by
oU oU oU
oU = —-0m=—-(00:%xn) =001 -|ng X —
on, 1 on, (661 x ny) 1 (1X8n1)
ouU
= [Ny x —]66;. 3.11
( 1 X (9n1) 1 ( )
Comparing this equation with the formula of infinitesimal change of potefitladue to66,
oU
_2v . A2
oU 26, 004, (3.12)
we obtain 3U U
— = — 3.13
90, - ™ oy (3.13)
Therefore, the torque formula (3.9) can be expressed by
oU
My =—-ngx —. 3.14
1 1 X on, ( )



3.4 Normal direction
The force acting on the particle 1 by the normal direction interaction between particle 1 and 2 is given by

Uy U, 95

Fn1 = =g T s axg (3.15)
According to the JKR theory, normal direction potentikl(6) is given through the contact disk radius
a as follows; .
Un(6(a)) L[4(a)’ 4(a)\’ 1(a)’
—4x63d-|Z) - 22 = 3.16
Fooe 0 |Bla) ~3lao) T 3la (3.10)
with , .
1 2
0@) _ g1 2(3) —f(i) . (3.17)
¢ Ao 3\ao

ou . - " . .
Thus,— can be numerically calculated frobh,(6) shown in Fig. 2. In addition, we ignore the potential
in the regiony < 0 before particles contact, that is, particles contact initially at0.
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Figure 2:PotentialU, as a function of.

5—5 can be derived from EqQ. (2.3),=r; + r, — |X1 — X»|, and we obtain

X1
00 X1 — X2
—=- 3.18
0Xq X1 — Xo ( )
As a result, we obtain U
X1 — Xo

Frpi= — . 3.19

nt 00 |X1 — Xo ( )

. . oUn . .
For example, when compression occurs over equilibrium §i.e. o), 25 becomes positive as shown in
Fig. 2 and thus the direction of normal forEg, becomes the same &g— X», that is, repulsive.

It is obvious that any torques cannot be generated fdgnbecauséJ,, is not a function ofn;.



3.5 Resistance to sliding motion

For the definition of slide displacemefitwe consider a vectaf, as follows;

do="r1M —ranp + (rL + ra)Ne, (3.20)
where
X1 — X2 rc
Nne = = ). 3.21
¢ [X1 — X2l rc) ( )

{o is nearly equal to the vector originated from the initial contact point of particle 2 to that of particle 1. We
definel as the component @ perpendicular to the vector, (see Fig. 3),

& =80 (4o- ne) ne. (3.22)

By using the above formula @f, we can obtain the forcEg; and the torquévis; acting on the particle
1 due to sliding motion between particle 1 and 2 as follows:

= kg +|>:12 — f:; =, (3.23)
Msi = —mX (ﬁ’lJ;n—r(:le({) = —ng X ainl (%ksgz) = —ksny X (g. g_ri)
= —riksny X <. (3.24)
(b)

Figure 3:Schematic views of (a) sliding, (b) rolling, and (c)twisting for the definition of each displacement.



3.6 Resistance to rolling motion
As shown in see Fig. 3, we define the rolling displacengeoy

& =r1Ng +ran. (3.25)

SinceU,q (£) is obviously independent of;, i.e., axm”
1

= 0, therefore, no forces are generated by the

rolling motion.
On the other hand, by using the above formula ofve can obtain the resistant torque due to rolling
motion (so-called ‘rolling resistance’) acting on the particle 1 as follows;

ong om

= —rlk,nl Xf. (326)

3.7 Resistance to twisting motion

The twisting angular displacemegiis defined as

t
$=nc f (w1 — W) - ncdt, (3.27)
0

wherew; andw, are angular velocities of the particle 1 and 2, respectively (see Figis3he time counted
from the beginning of contact.
Then, the resistant torque due to twisting motion acting on the particle 1 is given by

_ 0Utwist (¢) _ _i 1— 2
o

= —k¢ (3.28)

3.8 Description of particle rotation

We introduce Eulerian parameters (or quaternion) to describe the particle rotation;
&, e=(e, & &), with g+e+e+e=1 (3.29)

Rotation of a vectoparound an arbitrary axis can be expressed by using the Eulerian parameters as follows
Consideringy as the rotation angle vector (i.e., vectors are rotateg byanticlockwise direction around
the axis along¥) , Eulerian parameters are given by

& = cosg (3.30)
e = z/}sin%, (3.31)

wherey is the unit vector ofy. By using these Eulerian parameters, the rotation maf[igan be expressed
as
Aij = (1 - 282) 5”‘ + Zer - ZeoéijkeK. (332)



Then the rotated vectqy is given by

P = Ap
= (1—2e2)p+2(p~e)e—290(p><e). (3.33)
Note thatA|;* = A; sinceA is an unitary matrix. Thus, the inverse transformation is given by
p=A'p
= (1-28)p +2(p - e+2e(p xe). (3.34)

Each particle has its own Eulerian parameters and we can trace their temporal evolution, using th
angular velocity of each patrticle in every time step as follows:
At the beginning, Eulerian parameters of an particle are assumed to be

We consider the Eulerian parameters and the angular velocity of the particle at, tasef, €" and w,
respectively. Then, using the following variables

40 = wat (3.36)
Aey = coslg (3.37)
de = @sin%g, (3.38)
the Eulerian parameters at tihg; = t, + At are given by
&t = e - €' e (3.39)
el = e+ de - €' x Me. (3.40)

Note: Taking the limitatiomt — O, we can obtain

e = -(gw-exw). (3.42)

3.9 Tracing n; and ny

By using Eulerian parameters of particle 1 at titpe)(t) ande(t), n,(t) (andny(t)) at timet can be obtained
as follows.
Considering that particle 1 and 2 contact at timety, n; andn, at this time are given by

X2(to) — Xa(to)
X2(to) — Xa(to)l”

Next, by using rotation matrix at timig, A(t = ty), which is a function ofy(to) ande(ty) as shown in Eq.
(3.32),n4(0) is calculated,

N1(to) = —M2(to) = (3.43)

n(0) = A (to) N (to). (3.44)
Then, by using rotation matrix at timieA(t), which is a function ofy(t) ande(t), n.(t) is calculated,
ny(t) = A(t)n.(0). (3.45)
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4 Treatment of energy dissipation and displacement correction in in-
elastic regime

In this section | describe the calculation processes of energy dissipation and displacement correction fc
each degree of freedom in inelastic regime.

4.1 Normal direction

There are two processes of energy dissipation for normal direction: one is at the moment of contact o
particles and the other is at the moment of separation.

4.1.1 Atthe moment of contact

As described in the previous section 3.4, particle contact begifs=aD, at which the potential in the
normal direction is negative,

Un(6=0) = —1354% Fede =~ —0.847F 6. (4.1)
We assume that this energyf@rence from 0 is dissipated at the beginning of contact. By that assumption,
particle velocities are continuous at the moment of contact. There can be another assumption that tr
particles are accelerated abruptly at the moment of contact, transforming the erisgynde into kinetic
energy of the particles. We take the former assumption because we think velocity continuity is preferable
In addition, considering physically, some amount of energy should be lost by sound wave excited by the
particle contact. According to the analysis by Chokshi et al. (1993), this energy loss by sound wave reache
0.4F.6.. Therefore, the energy loss at the moment of contact assumed in our calculation is reasonable.

4.1.2 Atthe moment of separation
As described in the previous section 2, particles are kept in contact eyen @f and cannot be separated
till 6 = —6.. Taking a look carefully at Fig. 2),, is positive at the moment of separation,

4
Un (6 = _6(:) = 4._5Fcéc = 0.0chdc. (4.2)

Itis considered that this energy is stored in the form of elastic energy and is released by the separation. W\
assume, therefore, that this amount of energy is dissipated at the particle separation.

Note that these are energy dissipated not per a particle, batjesr of contact particles

10



4.2 Sliding and rolling

When the displacements for sliding and rolling become greater than critical values, inelastic deformation is

considered to occur. To treat this inelastic behavior, the following processes are carried out:

1. At the beginning of calculation, we set up the critical values of displacements.

2. When the displacements exceed the critical values, the displacements are reduced to the critical va

ues.

3. Potentials, forces and torques are calculated with the reduced displacements. Amount of energ

dissipated can be also calculated.

4. We need to correct a contact point vecia(t) because the sliding and rolling displacements in the
next following steps are calculated by usimgt). In other words, the correction of displacements are
recorded in the contact point vector. Actualty(t) is calculated through,(0) (see Eq. (3.45)), thus
we need to correat, (0).

In the following sections, details of above processes for each degree of freedom are described.

4.2.1 Sliding motion

e Critical displacement for sliding

According to Dominik and Tielens (1996), when the particles are sliding each other over the elastic

limit, the frictional force is given by

Ftric = (4.3)

2n’
where we assume = ay and ignore the dierence among materials for simplicityConsidering that
the inelastic sliding occurs when the elastic force given by Eg. (3.23) reaclkeg.tove obtain the
critical displacemend,i:

. G 2—v

820G Lerit = Eag & Lot = an (4.4)
(In the above equation, we have simplified the elastic force.)
Therefore, the critical value of displacement for sliding moti&f, is given by the material proper-
ties.

e Displacement correction and energy dissipation

When|{| > Zqit, £ IS corrected t@” :

4

é‘, = Lerit T - (4-5)
¢
3Dominik and Tielens (1996) derived a general formuld e
0 (for silicate, graphite,etc...)
F i = —— + 2
e on }Fn - Epcm (for ice, metal)
3 3
26713 2472 b*
where pgit = — —=G — il

Y
T o3 r o°”

whereb is the interatomic distance in the material arid-ds the equilibrium distance in the pair-potential model. For details,
see Dominik and Tielens (1996).
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The amount of energy dissipatett;ss, is calculated as
AEdis,s = ksgl : ({ - §') = kSé’crit (l{l - évcrit) . (46)

Note that1Egiss is counted for a pair of contact particles.

e Correction of contact point vector

The displacement excess is given by

A =¢-1. 4.7)
It seems that a contact point vector of particlenl(t), is corrected such 4s
14
ny(t) = ny(t) — Er_g' (4.8)
1

n; must be, however, a unit vector and thus be normalized. Therefore, we need to consider the
normalization and add some correction to the above equation. Heldydehe size of the apparent
correction,

, (4.9)

andl’” be the true size of the correction. By usingndl’, the corrected point vector (before normal-
ized) is given by
14V
ny(t) = ny(t) — __{_. (4.10)
271, |

I” is calculated as follows:

Figure 4:

As delineated in Fig. 4, we consider two equations for giling

cosB — cos(B + a) = |

(4.11)
cosB — +/I’2—2I"cosB + 1cos(B + a) = I,
where o) - A
S\ ] 4.12
O g (@12

4Divided byr; because, is a unit vector. The facto% reflects that the displacement excess is equally divided into two
contact particles.

12



anda is an angle betweem andn’ as shown in Fig. 4. Solving these equations (unknown
guantities ard’ anda), we obtain

(cosB - 1)sing
\/1 - (cosB —1)?

n;(0) is calculated by operating the rotation mawix (t)

I = cosB — (4.13)

n;(O):A-l(t)(nl(t —%‘r’—f'—') ) - 5 A (4.14)

Normalizingn;(0), we obtain a new corrected(0) such as

n(0)

4.15
) (4.15)

ni(0) =

4.2.2 Rolling motion

e Critical displacement for rolling

According to the idea by Dominik and Tielens (1995), the critical value of rolling displaceggnt,
should be 2 A for particles with any size and material. In contrast, an experiment by Heim et al.
(1999) suggests thag ~ 32 A for 1.8um SiO, particles.

The appropriate value @i is not clear so far. Thereforé&,;; is treated as a parameter in our
calculation.

e Displacement correction, energy dissipation and correction of contact point vector

(Same as in the case of sliding motion.)
When|€| > &it, € Is corrected t&” :

¢
cri 416
& =¢ tig’ (4.16)
The amount of energy dissipatett;s,, is calculated as
AEdiS,r =ké& - (‘f - f,) = K &erit (|§| - fcrit)- (4.17)

Note that1E;s, is counted for a pair of contact particles.

The corrected point vector (before normalized) atO is given by

0) = A0 () - 5 ) = m0)- 5 AE (4.18)
and the new correctedh (0) is given by
n;(0)
né(0) = — (4.19)
S mo)
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4.3 Twisting motion

e Critical angle for twisting

According to Dominik and Tielens (1996), when the particles are twisting each other over the elastic

limit, the resistant torque for twisting is given by

Gg

Mt, fric = 371' s

(4.20)

where we assuma = a, and ignore the dierence among materials for simplidityConsidering that

the inelastic twisting occurs when the torque due to elastic twisting given by Eq. (3.28) reaches to

Mt ric, we obtain the critical angle for twisting:

16 G 1
EGag(ﬁcrit = 3_2_8 — Derit = E ~0.02~1171°. (4.21)

e Displacement correction and energy dissipation
When|@| > @it, @ is corrected t@p’ :

¢ = bei L 4.22

The amount of energy dissipatett;s;, is calculated as
AEdist = kt¢/ ) (¢ - ¢l) = kt(ﬁcrit (|¢| - ¢crit) . (4-23)

Note that1Eg;s; is counted for a pair of contact particles.
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