天体表面ブロック層破壊による弾丸減速効果とクレーター則

巽瑛理(東大新領域),杉田精司(東大理)

Abstract

クレーター年代は、天体の進化過程を読み解く上で非常に重要な観測量である.小惑星上にもクレーターと推測 される地形が発見されており、クレーター年代の推定が可能である.しかし、クレーター年代はクレーターのス ケーリング則に大きい影響を受けるため、適切なスケーリング則を用いないと妥当なクレーター年代は得られな い.強度スケーリングを仮定して、イトカワのクレーター年代を 75Myr-1Gyr と推定した研究事例 [1] があるが、 イトカワのような表面が岩塊に覆われているような標的において、クレーター径が物質強度に依存する保証は実 は存在しない.重力スケール則に合う可能性も残されている.どちらのスケール則が正しいかで、イトカワの表面 年代推定値は何桁も異なってしまうので、この不確定性は非常に大きな問題である.そこで本研究では、イトカワ のように岩塊によっておおわれた標的においてどのようなクレーター則が成り立つか実験的な手法を用いて検討 した.実験結果は、表面が岩塊質で内部がレゴリスであるような標的では、弾丸が表面の岩塊を破壊しエネルギー を散逸することによって減速する(アーマリング効果)ため、クレーターサイズも重力則に比べて最大で 40% 程 度小さくなることを示していた.アーマリング効果を考慮したスケール則を用いてイトカワのクレーター年代を 再検討すると、10Myr 以下という宇宙線照射年代に近い非常に若い値が得られた.

1 はじめに

近年のはやぶさ(Muses-C)の探査によりイトカワ 表面の高精細な画像が得られ、その表面で多様なタイ ムスケールで衝突破壊や粉体流動などの物理現象が起 こっていることが明らかになりつつある. それらの物 理現象のタイムスケールは探査画像や持ち帰ってきた サンプルから、多岐にわたる手法によって推定されて いる:宇宙線照射年代< 8Myr[2][3], ⁴⁰Ar/³⁹Ar 年代 ~1.3Gyr[4], クレーター年代~75Myr - 1Gyr[1]. 本 研究では特に、イトカワのクレーター年代に着目した. イトカワ表面には複数の円形の窪地が存在する [5]. イ トカワ上に発見された円形の窪地は衝突によって形成 されたと考えられているが、ラブルパイル天体である と考えられているイトカワは表面性状がこれまで観測 されてきた天体と大きく異なり多くの岩塊が表面に存 在しており, その窪地の形状も他天体のクレーターと 異なる特徴をいくつか持っている.ひとつは、10m以 下の小さなクレーターが非常に少ないということ、も うひとつには、リムが岩塊で構成されているのに対し て窪地の底面に比較的粒径が小さいレゴリスが見られ ることである.

ラブルパイル天体は母天体が破壊した破片群が重力 相互作用により再集結してできたもので、構成粒子は それぞれ強度を持つが、一つの天体としてみたときに は微小な重力で纏まりを持つため、小さな固着力しか 持たないと考えられている.このような天体表層に対 してどのようなクレーターが形成されるか(重力支配 か材料強度支配か)といったことに対して、統一的な見 解は得られていない.Güttler et al. (2012)[6]では、 標的構成粒子直径/プロジェクタイル直径比を変えた実 験から、標的粒子直径がプロジェクタイル直径比を変えた実 験から、標的粒子直径がプロジェクタイル直径より大 きくなると直ちに重力スケーリングからずれ、材料強 度スケーリングに近づくとしている.一方、Holsapple and Housen (2014)[7]では、試行数は少ないが、標 的構成粒子がプロジェクタイルよりも10倍以上大き い場合でも衝突エネルギーが十分に大きければクレー

ター直径は重力スケーリングで予測されるサイズと同 じになると報告されている. Michel et al. (2009) で はイトカワのクレーター年代を推定する際に、材料強 度スケーリングを用いているが,重力スケーリングを 用いるとクレーター年代は桁で短くなることから、ラ ブルパイル小惑星上でのクレーターサイズを律則する モデルを明らかにすることはイトカワの年代推定に非 常に重要である.上で挙げた、小さなクレーターが少 ない理由の一つとして,表面のブロックを破壊するこ とによってエネルギーを散逸するアーマリング効果が 考えられる. 先行研究から, アーマリング効果の大小 は標的構成粒子直径/プロジェクタイル直径比だけで なく衝突エネルギーにも依存することが示唆される. 本研究では、これらの先行研究を踏まえ、表面が岩塊 で覆われているような標的においてアーマリング効果 を考慮したスケール則を実験的手法により検討した.

2 実験方法と結果

2.1 クレーター直径

クレーター形成実験は、当研究室所有の1段式軽 ガス銃を用いて行った.ポリカ製のプロジェクタイル (ϕ 10mm, 0.76-0.79g)を70 - 190m/sで衝突させた. この衝突速度は小惑星帯の平均衝突速度5.3km/sと比 べると1桁以上遅い.小惑星帯の衝突速度であれば、 1cm程度の隕石が数10cm - 1m程度のボールダーをカ タストロフィック破壊させることができる[8][9].今 回の実験速度範囲でも、構成粒子の破壊を伴うクレー ター形成を観察するため、標的構成粒子には破壊エネ ルギーの低いガラスビーズ (~200micron)の焼結体 を1cm程度に砕いたものを疑似ボールダーとして用 いた.

ラブルパイル小惑星の内部構造は明らかではない が、観測画像から推定されるレゴリス基層の上にボー ルダー層があるような標的を設定し、模擬ボールダー 層が厚いもの(40mm)と薄いもの(20mm)を用意し た.比較のためにガラスビーズのみの標的に対しても クレーター実験を行った.衝突速度を比較してできた クレーター直径を Fig.1 に示す.ボールダー層が薄い ものに着目してみると、クレーター直径は低速度域で は、ボールダーを破壊することでエネルギーを散逸し、 クレーター直径はボールダー層が厚いものと同程度で あるが、ボールダー層を貫通すると直ちに、重力則で 記述されるガラスビーズのクレーター直径に漸近して いくことが分かる.

Fig. 1 The size of craters formed on targets composed of coarse grains (comparable to projectile size). The crater sizes on coarse-grain surface with thick boulder layer (\triangle) appear to be approximately constant and those with a thin boulder ayers (\blacktriangle) exhibit a transition from the cratering efficiency close to the results for targets with a thick boulder layer to the gravity scaling (\blacksquare) as impact energy increases (gray arrow). This transition occurs when the projectiles penetrate the boulder layers.

2.2 弾丸減速率

クレーター直径はプロジェクタイルの標的へのも ぐりこみ深さに大きく関係すると考えられたため、 プロジェクタイルのボールダー層貫入前と貫通後の 速度を計測し、ボールダー層での減速率を計算した. ボールダー層を通過するときに速度の2乗に比例し た抵抗を受けるとすると、深さzでの弾丸速度は、 $v = v_0 \exp(-z/A)$ と表わせて、実験結果からフィッ ティングを行うことによって減速率 $A \sim 1.3D_t$ と求め られた (D_t は標的構成粒子径).

3 議論

実験結果からクレーターサイズは材料強度スケーリ ングよりも重力スケーリングに近いことが分かった. しかし、今回の実験においてクレーターサイズは重力 スケーリングから予測されるサイズよりも最大で40% 程度小さくなった.これは表面のボールダーを破壊し たことによってエネルギーを散逸し(E_{dis})、クレー ター掘削に使われる実効的エネルギー E_{eff} が小さく なったためであると考えられる. E_{eff} はプロジェクタ イルの標的へのもぐりこみの状況に応じて、次の4つ の領域に分けられると考えられた.

- (i) 標的構成粒子の破壊が起こらない場合. $(v_{\text{eff}} \sim v/(1 + m_t/m_p)[6])$
- (ii) 標的構成粒子は破壊されるが、ボールダー層でプロジェクタイルが停止する場合.
- (iii) プロジェクタイルがボールダー層を貫通し、レゴ リス層に到達する場合.
- (iv) ボールダー層破壊エネルギーよりも衝突エネル ギーが十分に大きい場合.(重力スケーリングへ 漸近.[7])

このように 4 つの領域に分けると, Güttler et al. (2013) は低エネルギーの極限を, Holsapple and Housen (2014) は高エネルギーの極限についての実験結果をそれぞれ説明していると考えられる. E_{eff} から実効的な速度 v_{eff} を計算し, クレーターサイズを重力スケーリングからのずれとして評価することができる.

$$R_c/R_p \propto (gR_p/v_{\rm eff}^2)^{-\alpha/3}$$

この補正されたスケール則をイトカワの窪地に適用し, クレーター年代を推定する. イトカワ上の最大級のク レーターである Arcoona は直径が約 150m である [5]. このクレーターの底面はレゴリスが豊富に存在するこ とから, 領域 (iii) に相当するとすると, 150m 程度のク レーターが形成する平均時間は約 10Myr である. こ の年代はあくまで平均値であり、確率的に数倍程度変 わり得るが、イトカワの表面年代が 10Myr 程度である とすれば、この年代は Michel et al. (2009) で推定さ れた下限値 75Myr よりも短く,宇宙線照射年代の上限 値により近づくという結果になった.これまで、イト カワのクレーター年代はイトカワが再集積してからの 年代を示すものと考えられてきたが、⁴⁰Ar/³⁹Ar 年代 よりも極めて短いことを考慮すると、⁴⁰Ar/³⁹Ar 年代 はイトカワの母天体が破壊した年代を示し、その後イ トカワは何度かの m スケールでの表面更新を経験した 可能性が示唆された.

謝辞

本研究を進めるにあたって,神戸大学荒川先生,中 村先生,産業医科大学門野先生に有益な議論を戴きま したことに感謝いたします.

Reference

- [1] P. Michel et al., Icarus **200**, pp. 503-513, (2009)
- [2] K. Nagao et al., Science **333**, pp. 1128-1131, (2011)
- [3] M.M. Meier et al., Proceedings of 45th LPSC, 1247, (2014)
- [4] Park, J. et al., Proceedings of 77th Annu. Met. Soc. Meet., 5190, (2014)
- $[5]\,$ N. Hirata et al., Icarus **200**, pp. 486-502, (2009)
- [6] C. Güttler et al., Icarus 220, pp. 1040-1049, (2012)
- [7] K.A. Holsapple and K.R. Housen, Proceedings of 45th LPSC, 2538, (2014)
- [8] F. Hörz et al., The Moon 13, pp. 235-258, (1975)
- [9] K.R. Housen and K.A. Holsapple, Icarus 142, pp.21-33, (1999)