## ナイロン→ナイロン衝突の超高速度撮影

# 柳澤正久、海老名良祐、高橋悠太(電気通信大学) 黒澤耕介、長谷川直(宇宙研/JAXA)、杉田精司(東大)、松井孝典(千葉工大)

#### 1. 背景と目的

高速度衝突における閃光は、一つのメカニ ズムですべてが説明できるような単純なもの ではない。室内実験においては、ジェッティ ング雲や衝突蒸気雲からの放射以外に、弾丸 直径を衝突速度で割った時間にほぼ等しい継 続時間をもつスパイクが衝突の瞬間に観測さ れることがある[1-7]。観測カメラの時間分解 能が不十分なため月面衝突閃光[8]など自然 界の衝突についてスパイクが観測されたとい う報告はないが、将来はその有無や強度から 衝突現象について有意義な情報が得られる可 能性がある[9, 10]。将来の観測に備えスパイ ク光の原因を突き止めておく必要がある。

#### 2. 実験方法

宇宙研/JAXA の新二段式軽ガス銃で、直径 7 mm のナイロン 66 球を 7 km/s で発射し、ナイ ロン 66 ブロックに衝突させる。ブロックは 80x80x40 mm の直方体で 80x80 mm の面の真中 に垂直に衝突させる。

衝突閃光の測光は主に以下に示すコンポー ネントから成るフォトメータで行った。(a) PIN Si フォトダイオード(浜松フォトニクス S3071、感度波長範囲は約400-1100 nm);(b) ア ンプ(浜松フォトニクス C8366);(c) レンズ (焦点距離55 nm、F1.8 開放、フィルタなし)。 遮断周波数は約40 MHz である。視野は衝突点 を中心とした直径約11 cm の範囲に限定され ている。また、衝突面から測って約17度の方 向から測光を行った。

衝突の様子は、超高速度カメラ nac ULTRA Neo[11]で撮像された。最速 5 ns おきの画像 が 12 コマ(制約はあるが 24 コマ可能)取得で きるが、今回紹介するデータは 50 ns おきに 撮像されたものである。カメラは、衝突面を 真横から見る位置に設置された。撮像開始の トリガには上記のフォトメータの信号を使っ た。このカメラはトリガ前の画像を取得でき ないため、最初の画像は、フォトメータが閃 光を検知し始めてから(おそらく弾丸が標的 に接触してから)0.3 μs経過してから撮像され た。

また、分光ストリークカメラによる観測も 行った。図1に示すように、スペクトルを時 間の関数として観測できる。視野は標的位置 で約30 cmである。

#### 3. 結果

超高速度カメラの最適な設定値を捜しなが ら、またトリガ方法を替えながら6回の shot を行った。スパイク光の原因を捉えているの は5,6回目の shot であるが、より分かり易い 最後の shot1545 について結果を述べる。衝突 速度は 6.99 km/s であった。衝突閃光スペク トルの時間変化を図 1 に示す。衝突の瞬間、 継続時間が 1  $\mu$ s 以下の連続スペクトルに近い スパイクが観測され、いったん強度が落ちた 後、 $C_2$  や CN によるバンドスペクトルが現れる。 これはジェッティング雲からの放射であろう。



図 1. 衝突閃光スペクトルの時間変化(shot1545). 色の濃い部分で強度が強い.上の挿絵は、C<sub>2</sub>バン ドの波長を示すためのブタン・バーナーのスペ クトルである.青と緑の縦帯はフィルタ付フォ トメータの観測波長域である(本論文では述べ ない).

スパイク光の部分を拡大して表示したのが 図 2 である。この図には、超高速度カメラの 露光のタイミングを示すモニタ信号も示す。 図中の1から9はフレーム番号を表している。 露光は 50 ns おき、各フレームの露光時間も 50 ns である。フォトメータ、超高速度カメラ とオシロスコープを繋ぐ同軸ケーブルによる 信号の遅延は <20 ns、つまり半フレーム以下 であろう。

超高速度カメラの画像を図3に示す。第1 フレームの撮像時には既にスパイク光のピー クを過ぎているが、標的内に少し貫入しかけ た弾丸が光っている様子が捉えられている。 真横からの撮像なのではっきり分からないが、 標的面の衝突点近傍も光っているようである。



図 2. スパイク光強度(光源での明るさ)の時間変 化. 下側は超高速度カメラのモニタ信号で 12 フ レームの露光のタイミングを示す.

図2の0.55 µs 時点には、フォトメータ信 号に第2のピークがある。このピークは他の2 つの shot にも存在し、再現性のあるものであ る。図3では第6フレームに相当し、弾丸の 背面が一瞬明るくなっているのが確認できる。 原因は不明だが興味深い現象である。

### 4. 考察

1 次元モデルでは、ナイロン同士が 7 km/s で衝突した場合、衝撃波の伝播速度は 8 km/s である[12]。衝撃波が直径 7 mm の弾丸の背面 まで達するのは弾丸と標的の接触後 0.9 µs 後、 つまり第 12 フレームの露光時である。衝撃波 が通過し高温になった部分だけが光って写る とすると、光る部分がナイロン球に広がって いく様子が超高速度カメラで捉えられるはず であり、第1フレームからナイロン球全体が 光っていることは説明できない。

ここで、ナイロン球は透明ではないが磨り ガラスのように半透明であることに注意すべ きである。光が内部で散乱されて全体が光っ ていると考えれば、衝撃波到達前から光って いることは説明できる。

#### 参考文献

[1] 柳澤正久,他,天体の衝突物理の解明VI,北大 低温科学研究所, 2010.11. [2] 柳澤正久, 他, スペース・プラズマ研究会, 2011.3.[3] 柳澤正久, 他,日本地球惑星科学連合大会,2011. [4] 柳澤正 久,他,惑星科学会,2011 秋. [5] 柳澤正久, 他, スペース・プラズマ研究会, 2012.2. [6] Jean and Rollins, AIAA J, 8, 1742-1748, 1970. [7] Ernst and Schultz, Lunar and Planetary Science XXXVIII, #2353, 2007. [8] Yanagisawa and Kisaichi, ICARUS, 159, 31-38, 2002. [9] Yanagisawa et al., Asteroids, Comets, Meteors, #6289, 2012. [10] 柳澤正久, 他, 日本地球惑星科 学連合大会, 2012. [11] http://www.nacinc.jp/ analysis/products/uhsc/ultraneo/ (2012.3). [12] LASL Shock Hugoniot Data, edited by Marsh S. P., Univ. California Press, 430-431, 1980.

謝辞:本研究は宇宙研/JAXA スペースプラズマ共 同研究設備の支援を得て行われた。超高速度カ メラ nac ULTRA Neo による撮影は株式会社ナッ ク イメージ テクノロジーの協力を得て行われ た。



図 3. 超高速度カメラ(nac ULTRA Neo)によって撮影された最初の8フレーム(shot1545). 左から右, 上から下の順で 50 ns 毎の画像である(露光時間も 50 ns). 弾丸の進行方向は左から右(6.99 km/s), その直径は7 mm である. 外部光は使っていない. 標的であるナイロンブロックははっきりと写ってい ないが,右側にあり,カメラは衝突面に沿う方向(真横)から撮影している. 衝突面はほぼ鉛直である. 6 フレーム目で弾丸が一瞬明るくなっている(サブ・スパイク)。ジェッティング雲が広がっていく様子 も捉えられている.